Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cutan Ocul Toxicol ; 39(3): 180-192, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32586141

RESUMEN

PURPOSE: OptiSafe is an in chemico test method that identifies potential eye irritants based on macromolecular damage following test chemical exposure. The OptiSafe protocol includes a prescreen assessment that identifies test chemicals that are outside the applicability domain of the test method and thus determines the optimal procedure. We assessed the usefulness and limitations of the OptiSafe test method for identifying chemicals not requiring classification for ocular irritation (i.e. bottom-up testing strategy). MATERIALS AND METHODS: Seventeen chemicals were selected by the lead laboratory and tested as an independent study. Ninety-five unique coded chemicals were selected by a validation management team to assess the intra- and interlaboratory reproducibility and accuracy of OptiSafe in a multilaboratory, three-phased validation study. Three laboratories (lead laboratory and two naïve laboratories) evaluated 35 chemicals, with the remaining 60 chemicals evaluated by the lead laboratory only. Test method performance was assessed by comparing classifications based on OptiSafe results to classifications based on available retrospective in vivo data, using both the EPA and GHS eye irritation hazard classification systems. No prospective in vivo testing was conducted. RESULTS: Phase I testing of five chemicals showed that the method could be transferred to naïve laboratories; within-lab reproducibility ranged from 93% to 100% for both classification systems. Thirty coded chemicals were evaluated in Phase II of the validation study to demonstrate both intra- and interlaboratory reproducibility. Intralaboratory reproducibility for both EPA and GHS classification systems for Phase II of the validation study ranged from 93% to 99%, while interlaboratory reproducibility was 91% for both systems. Test method accuracy for the EPA and GHS classification systems based on results from individual laboratories ranged from 82% to 88% and from 78% to 88%, respectively, among the three laboratories; false negative rates ranged from 0% to 7% (EPA) and 0% to 15% (GHS). When results across all three laboratories were combined based on the majority classification, test method accuracy and false negative rates were 89% and 0%, respectively, for both classification systems, while false positive rates were 25% and 23% for the EPA and GHS classification systems, respectively. Validation study Phase III evaluation of an additional 60 chemicals by the lead laboratory provided a comprehensive assessment of test method accuracy and defined the applicability domain of the method. Based on chemicals tested in Phases II and III by the lead laboratory, test method accuracy was 83% and 79% for the EPA and GHS classification systems, respectively; false negative rates were 4% (EPA) and 0% (GHS); and false positive rates were 40% (EPA) and 42% (GHS). Potential causes of false positives in certain chemical (e.g. ethers and alcohols) or hazard classes are being further investigated. CONCLUSION: The OptiSafe test method is useful for identifying nonsurfactant substances not requiring classification for ocular irritancy. OptiSafe represents a new tool for the in vitro assessment of ocular toxicity in a tiered-testing strategy where chemicals can be initially tested and identified as not requiring hazard classification.


Asunto(s)
Alternativas a las Pruebas en Animales , Ojo/efectos de los fármacos , Irritantes/toxicidad , Pruebas de Toxicidad Aguda/métodos , Concentración de Iones de Hidrógeno , Irritantes/química , Sustancias Macromoleculares/química , Reproducibilidad de los Resultados , Solubilidad , Agua/química
2.
Regul Toxicol Pharmacol ; 114: 104662, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32325112

RESUMEN

Nonclinical testing of human pharmaceuticals is conducted to assess the safety of compounds to be studied in human clinical trials and for marketing of new drugs. Although there is no exact number and type of nonclinical studies required for safety assessments, as there is inherent flexibility for each new compound, the traditional approach is outlined in various FDA and ICH guidance documents and involves a combination of in vitro assays and whole animal testing methods. Recent advances in science have led to the emergence of numerous new approach methodologies (NAMs) for nonclinical testing that are currently being used in various aspects of drug development. Traditional nonclinical testing methods can predict clinical outcomes, although improvements in these methods that can increase predictivity of clinical outcomes are encouraged and needed. This paper discusses FDA/CDER's view on the opportunities and challenges of using NAMs in drug development especially for regulatory purposes, and also includes examples where NAMs are currently being used in nonclinical safety assessments and where they may supplement and/or enhance current testing methods. FDA/CDER also encourages communication with stakeholders regarding NAMs and is committed to exploring the use of NAMs to improve regulatory efficiency and potentially expedite drug development.


Asunto(s)
Preparaciones Farmacéuticas/química , Animales , Desarrollo de Medicamentos , Humanos , Medición de Riesgo , Estados Unidos , United States Food and Drug Administration
3.
Cutan Ocul Toxicol ; 38(2): 141-155, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30418044

RESUMEN

PURPOSE: Eye and skin irritation test data are required or considered by chemical regulation authorities in the United States to develop product hazard labelling and/or to assess risks for exposure to skin- and eye-irritating chemicals. The combination of animal welfare concerns and interest in implementing methods with greater human relevance has led to the development of non-animal skin- and eye-irritation test methods. To identify opportunities for regulatory uses of non-animal replacements for skin and eye irritation tests, the needs and uses for these types of test data at U.S. regulatory and research agencies must first be clarified. METHODS: We surveyed regulatory and non-regulatory testing needs of U.S. Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM) agencies for skin and eye irritation testing data. Information reviewed includes the type of skin and eye irritation data required by each agency and the associated decision context: hazard classification, potency classification, or risk assessment; the preferred tests; and whether alternative or non-animal tests are acceptable. Information on the specific information needed from non-animal test methods also was collected. RESULTS: A common theme across U.S. agencies is the willingness to consider non-animal or alternative test methods. Sponsors are encouraged to consult with the relevant agency in designing their testing program to discuss the use and acceptance of alternative methods for local skin and eye irritation testing. CONCLUSIONS: To advance the implementation of alternative testing methods, a dialog on the confidence of these methods to protect public health and the environment must be undertaken at all levels.


Asunto(s)
Alternativas a las Pruebas en Animales/legislación & jurisprudencia , Regulación Gubernamental , Pruebas de Toxicidad , Animales , Ojo/efectos de los fármacos , Agencias Gubernamentales , Humanos , Piel/efectos de los fármacos , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...